

CLIMATE OF POLAND 2021

The 6th Report of the Intergovernmental Panel on Climate Change Working Group I (IPCC WGI) published in 2021 confirms that the Earth's climate has been changing at a pace never seen before since the mid-19th century and that the progressive warming endangers the wellbeing of the planet, its ecosystems, and human life. The impact of modern warming is widespread – the next 2-3 decades will be critical to the future of the Earth. The Intergovernmental Panel on Climate Change Working Group II (IPCC WGII), in a report published at the beginning of March this year, states that the impact of progressive warming threatens agricultural production, both in terms of quantity and quality, water resources, human safety and health, and infrastructure security. All this is due to the progressive intensification of extreme phenomena - both meteorological and climatic - and, consequently, hydrological ones.

The reports of both IPCC working groups and the WMO Atlas on the mortality and economic losses caused by extreme weather, climate, and water conditions between 1970 and 2019 published in September 2021, confirm the thesis that the observed climate change leads to the exhaustion of civilization resources.

Therefore, multidirectional measures are required, including the necessary, systematic monitoring of the climate system, undertaking activities to slow down or even eliminate the causes of contemporary climate change, forecasting the future evolution of the climate system and developing adaptation strategies, i.e., taking adaptation measures.

The Institute of Meteorology and Water Management – National Research Institute has been monitoring Poland's climate for over 100 years on an ongoing basis, conducting observations and measurements of all relevant climatic variables. We inform society and public admin-istration about the climate system condition and the threats resulting from climate variabil-ity and change. We are the National Service, the meaning of which was well understood by the fathers of independent Poland, including the first president of the Republic of Poland, Gabriel Narutowicz.

We present the study "Climate of Poland 2021". It is the second report, after last year's one concerning 2020, which is a synthetic description of Poland's climate in the past year, presented in the context of the longterm climate characteristics and from the perspective of contemporary global warming.

> Prof. Mirosław Miętus Deputy Director of IMGW-PIB Director of the Research and Development Center Permanent Representative of Poland with World Meteorological Organization (WMO)

The presentation was prepared on the basis of the POLISH CLIMATE MONITORING BULLETIN developed by the team consisting of: Prof. ZBIGNIEW USTRNUL, AGNIESZKA WYPYCH, Ph.D., MICHAŁ MAROSZ, Ph.D., DAWID BIERNACIK, DANUTA CZEKIERDA, ANNA CHODUBSKA, KAMILA WASIELEWSKA, KLAUDIA KUSEK, DIANA KOPACZKA.

Supplementary materials were prepared by the team: Prof. MIROSŁAW MIĘTUS, JANUSZ FILIPIAK, Ph.D., MICHAŁ KITOWSKI, EDWARD ŁASZYCA, Ph.D, DAWID BIERNACIK, MICHAŁ MAROSZ, Ph.D., BEATA KOWALSKA. Comments: Prof. MIROSŁAW MIĘTUS.

POLISH CLIMATE MONITORING BULLETIN was created as part of the CLIMATE project and has been published since 2010. The multi-annual series data were used in the presentation: Warsaw (Halina Lorenc, 2010), Poznań (Leszek Kolendowicz et al., 2019), Gdańsk (Mirosław Miętus, 1996) and Wrocław (Krystyna and Tadeusz Bryś, 2010) extended by Janusz Filipiak.

IMGW-PIB own study 2021.

Design: Michał Seredin (IMGW-PIB).

Reproduction and copying for commercial purposes are prohibited. Contact Editorial office content@imgw.pl.

The animation of climate change in Poland is also available on the IMGW-PIB YouTube channel (https://www.youtube.com/c/IMGWMETEO).

CLIMATE OF POLAND IN 2021

The area average air temperature in 2021 in Poland reached 8.7°C and was equal to the average annual long-term temperature value for the climatological normal period 1991-2020. The year 2021 should be classified as a thermally normal if you consider the average temperature for Poland.

The warmest regions of Poland were the Coast and the Southern-Baltic Coastlands belt, where an area average air temperature amounted to 9.0°C and was higher than the standard normal for that area by only 0.1°C. The coldest region was the Sudetes, where the average annual air temperature was 7.9°C and was lower than the standard normal by 0.2°C.

Let's look at the lake districts and lowlands, considering also their division into the western and eastern parts (along the 19°E meridian). There is clearly a strong thermal differentiation in the western and eastern parts of the two largest regions of Poland. In the case of lake districts, the difference in mean annual values between the western and eastern parts of this area was 1.2°C and in the lowlands it was 1.1°C. After taking these differences into account, it can be concluded that the warmest region of Poland in 2021 was the western part of the lowlands belt, with an average annual air temperature of 9.4°C.

Last year, June and July, and all autumn months, were particularly warm. Conversely, the coldest month was February, characterized by an average air temperature of 1.5°C below normal.

The highest temperature (36.1°C) was recorded on 20 June in Słubice. In turn, the lowest temperature at 2 m above ground (-26.4°C) was recorded on 18 January in Suwałki. The lowest air temperature at the ground, i.e., at 5 cm height, was recorded on 18 January at the Białystok station ; its value was -32.9°C.

The summer of 2021, i.e., the period from June to August, was the fourth warmest summer in Poland since the mid-20th century.

The strong upward trend in air temperature in Poland, which has been occurring for many years, continued in 2021. Since 1951, the total annual temperature increase has been estimated at 2.0°C. The value of the trend coefficient differs in the individual climatic regions of the country. The strongest temperature increase occurs in the lake districts, where it exceeds 2.1°C, the weakest in the Sudety Mountains, reaching almost 1.8°C.

The analysis of the historical series shows that since 1851 the air temperature in selected large Polish cities has increased from 1.4°C to 2.3°C. It should be emphasized that the rate of temperature increase in large urban agglomerations has increased significantly over the last 40 years.

The area-averaged precipitation total in 2021 in Poland was 627.4 mm, which was almost 103% of the so called normal value determined on the basis of 30 years measurements (1991-2020). According to Kaczorowska's pluvial conditions classification, the past year should be classified as normal.

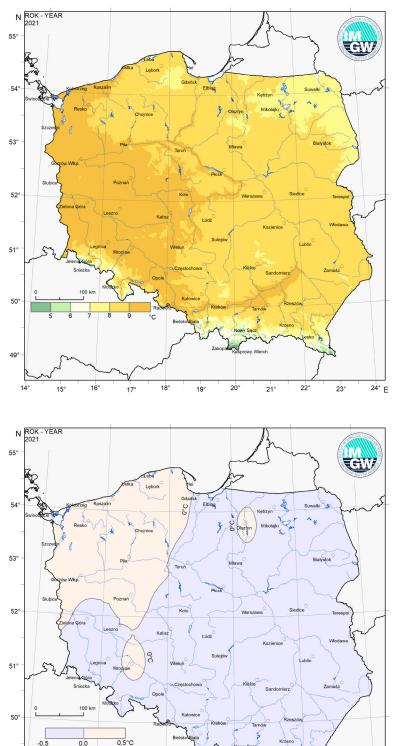
In 2021, precipitation was characterized by a strong spatial variability. The area average annual precipitation total ranged from over 450 mm to nearly 1050 mm. The highest annual precipitation total was recorded in the Tatra Mountains. Compared to the long-term normal (1991-2020), the precipitation in 2021 ranged between 80 and 130% of the climatological normal.

In the warm season of the year, numerous cases of violent and extremely heavy rainfalls causing local floods and flooding occurred. Such phenomena struck several agglomerations and resulted in urban flash floods. Szczecin and Słubice (June 30: 96.3 mm and 71.3 mm, respectively) and Poznań (June 22: 79.4 mm) were particularly affected by heavy rainfalls. The highest daily precipitation total of 104.4 mm, occurred on August 23 at Śnieżka.

In the central part of the Coast and Pomerania, there was a rainfall deficit of up to 20% of the long-term normal, while in Eastern Poland, annual rainfall was higher by 10 to 30% compared to the 1991-2020 normal.

In the entire western and central part of eastern Poland, in 2021, evapotranspiration outweighed precipitation. The moisture loss in the mentioned area reached 220 mm, i.e. about 1/3 of the precipitation totals.

The annual value of sunshine duration ranged from just over 1458 hours in Śnieżka and 1564 hours in Mława to 2127 hours in Łeba.


SPIS TREŚCI

Air temperature	5
Air temperature. Thermal conditions classification	7
Air temperature. Thermal conditions variability, 1951-2021	10
Air temperature. Thermal conditions variability, 1851-2021	15
Air temperature. Extreme temperatures – quantiles	16
Air temperature. Extreme temperature in February – thermal hazards risk	17
Air temperature. Extreme temperature in July – thermal hazards risk	18
Air temperature. Interannual variability	19
Precipitation	23
Precipitation. Pluvial conditions classification	24
Precipitation. Probabilities of exceedance of the maximum daily precipitation totals in May and June 2021	26
Precipitation. Cumulative precipitation totals and cumulative number of days with precipitation	28
Precipitation. Thunderstorms at selected stations	30
Climatic water balance. Warm half-year	31
Atmospheric circulation. Indices and surface wind	32
Sunshine duration	38
Sea level	39
Extremes	41
Summary of extreme weather And climate events in poland in 2021	42

AIR TEMPERATURE

The spatial variability of air temperature in 2021 is a consequence of the quantity of incoming solar radiation over the territory of Poland (partially described by the sunshine duration), the advection of warm air masses, and the influence of local factors. The warmest region of the country in 2021 was almost the entire western part of Poland and the Vistula valley in its upper reaches to Sandomierz. Whereas, the coldest was, except for the higher parts of the Sudetes and the Carpathians, in north-eastern Poland in the vicinity of Suwałki, part of the Great Masurian Lakes Region and in the Kashubian Lake District. The location of the warmest and coldest areas on an annual basis is practically an exact reflection of the temperature variability in the long-term period 1991-2020.

Spatial variability of the average air temperature anomaly against the socalled climatological standard normal, i.e. the average value for the period 1991-2020, shows that the values of anomalies were between -0.5°C and 0.5°C.

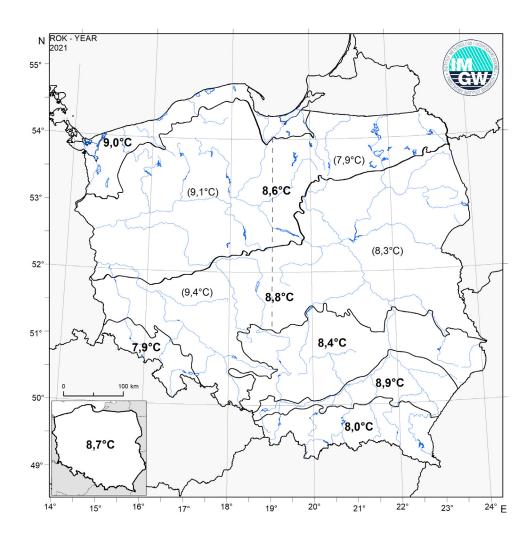
18

17

16

20

10

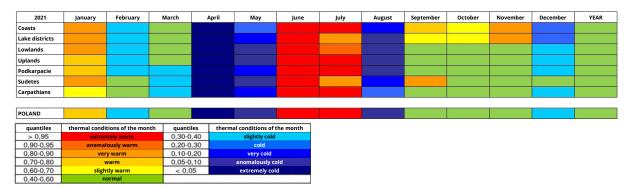

22

23

21°

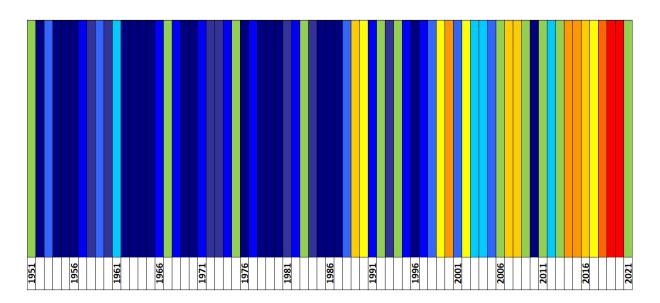
49

24° E

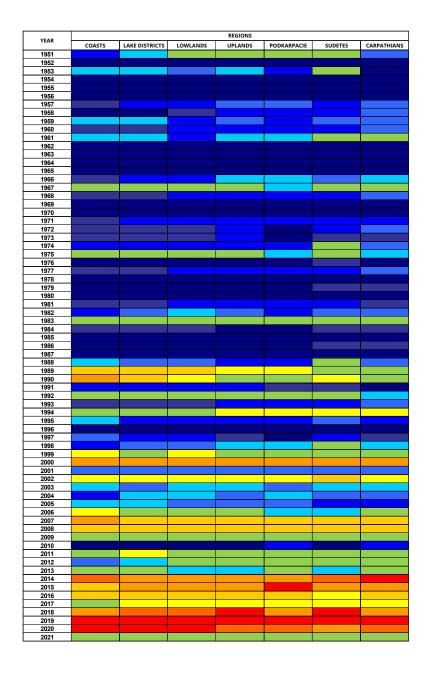


The area average air temperature is an indicator that allows the synthetic description of the thermal conditions in a given area. Moreover, it allows a comparison between regions and provides references to values determining temperature on a regional or global scale. For this purpose, uniform temperature values are calculated for the basic physio-geographical units of Poland. They are (from the north): the Coast belt and the Southern-Baltic Coastlands belt, the lake districts belt, the lowlands belt, the uplands belt, the Podkarpacie, the Carpathians, and the Sudetes. In addition, to reflect the impact of the Atlantic Ocean and the Asian continent, the lowlands belt and the lake districts were divided into western and eastern parts along the 19°E meridian. Such a division allows showing possible differences related to the thermal regionalization of Poland. The warmest regions of Poland were the Coast belt and the Southern-Baltic Coastlands belt, where the area average temperature was 9.0°C. This value was higher than the normal for this region by only 0.1°C. The coldest region was the Sudetes, where the average annual temperature was 7.9°C and was 0.2°C lower than the standard normal. Let's look at the lake districts and lowlands, considering their division into the western and eastern parts (along the 19°E meridian). There is clearly a strong thermal differentiation in the western and eastern parts of the two largest regions of Poland. In the case of lake districts, the difference in mean annual values between the western and eastern parts of this area was 1.2°C, and in the lowlands, it was 1.1°C. After taking these differences into account, it can be concluded that the warmest region of Poland in 2021 was the western part of the lowland belt, with an average annual air temperature of 9.4°C

AIR TEMPERATURE Thermal conditions classification


	I	П	Ш	IV	v	VI	VII	VIII	IX	Х	XI	XII	Z	W	L	J	YEAR
2021	-1,0	-1,6	3,2	6,0	12,0	19,3	20,9	17,0	14,0	9,4	5,2	-0,6	-0,2	7,1	19,1	9,5	8,7
Delta	0,1	-1,5	0,1	-2,6	-1,4	2,5	2,1	-1,5	0,2	0,6	1,1	-0,8	0,1	-1,3	1,0	0,7	-0,1

The air temperature is characterized by inter-annual variability. The warmest month in 2021 was July. The average temperature this month reached 20.9°C. It was 2.1°C higher than the average long-term temperature for this month. In turn, the coldest month was February. The average monthly temperature reached 1.6°C and was 1.5°C lower than the climatological standard normal. The first two months of summer, June and July, were particularly warm when the average monthly temperatures were over 2.0°C higher than the climatological standard normal. Spring was the period characterized by the strongest deviations from the normal. The temperature this season was as much as 1.3°C lower than the climatological standard normal. April was particularly anomalous when the temperature was 2.6°C lower. It was another cold May in Poland. In 2020 this month was colder.


Descriptive classifications are often used to determine to what extent the thermal conditions of the month, the climatic season, or the year differed from typical conditions. One such qualification is based on an empirical cumulative distribution function of average air temperature values for each month, season, or year in the normal period 1991-2020, allowing the determination of threshold values of the classes based on a certain probability. Each class is given descriptive names, as shown above.

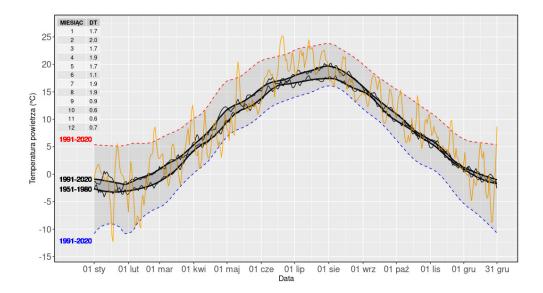
On the basis of this classification, thermal conditions in almost all climatic regions were classified as: extremely warm in June, anomalously and extremely warm in July, very warm or warm in January, extremely cold in April, very cold or anomalously cold in August. In other months, thermal conditions in most regions were classified as thermally normal.

It is possible to illustrate how the thermal conditions have changed in Poland, year by year, since the beginning of the second half of the 20th century by using a descriptive classification of thermal conditions. It is visible that thermal conditions until the mid-1980s in each year were classified in the group of cold and cool conditions. In turn, from the second half of the 1980s, there were more often conditions known as normal or warmer. The last decade has seen conditions ranging from very warm to extremely warm. The warm period is marked by the years 1996 and 2010. The year 1996 was extremely cold with an average temperature of 6.6°C, and the year 2010 was very cold, with an average temperature of 7.5°C. In 1996, it was determined by very cold winter months, both from January to February and in December. In the case of 2010, January, February, and December were cold, while July was very warm (20.8°C).

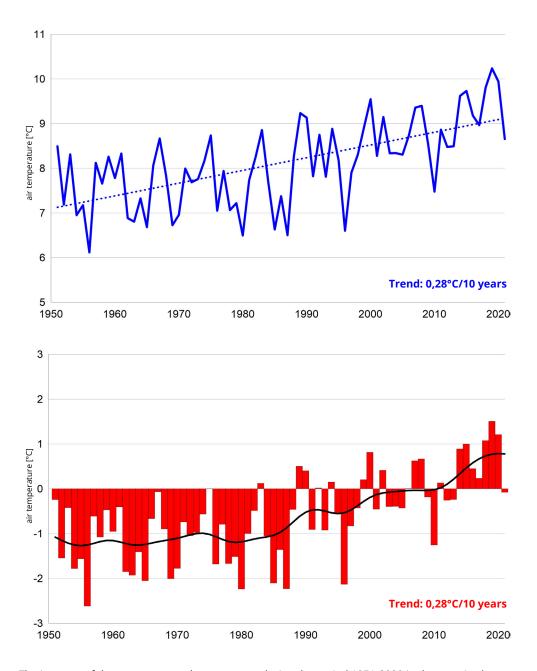
The temperatures are rising! In individual years, physiogeographic regions differ in terms of thermal conditions. These differences are not significant. However, there are some differences in the analyzed periods. There have been years when thermal conditions variability in the regions was significant (e.g., 1951, 1966, and 1997). The warming process is clearly visible. As you move along the timeline, the cool colours are replaced by warm colours. This colour change reflects the global warming process in all regions.

AIR TEMPERATURE Thermal conditions variability, 1951-2021

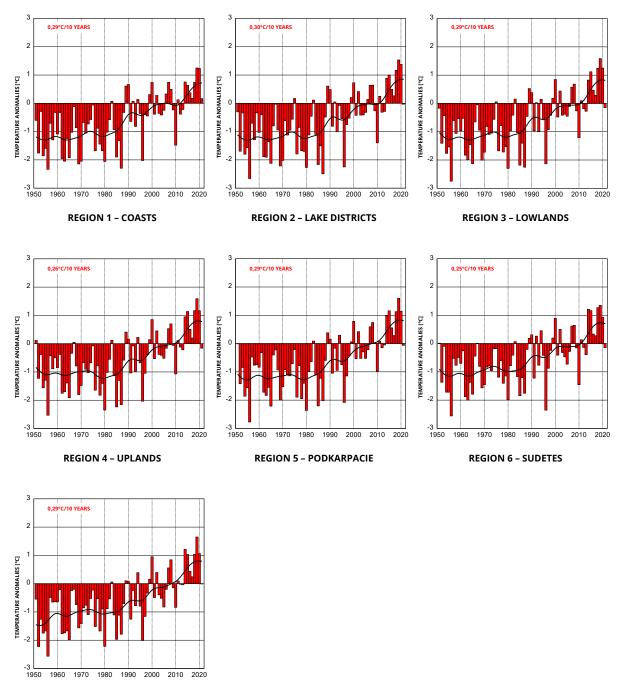
Decade	Average air tei	Normal period	
1951-1960	7,25		
1961-1970	7,08		
1971-1980	7,25	7,19	1951-1980
1981-1990	7,61	7,31	1961-1990
1991-2000	7,91	7,59	1971-2000
2001-2010	8,22	7,91	1981-2010
2011-2020	9,33	8,73	1991-2020
2012-2021	9,31	8,76	1992-2021

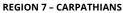

Average air temperature values in the individual decades of the period 1951-2020 are between 7.1°C (more precisely 7.08°C in the decade 1961-1970) and 9.3°C (more precisely 9.33°C in the last decade 2011-2020). The table showing those values illustrates the progressive increase of air temperature from decade to decade. The situation analyzed from the point of view of average values for 30-year periods (the so-called normal climatological periods) is similar. In this case, the increase is unambiguous, from 7.2°C in the period 1951-1980 up to 8.7°C for the last 30-year period, i.e., 1991-2020. It represents an increase of 1.5°C in terms of 30-year normals. Note that for the 30-year period 1992-2021, atypical in the climatological description, the average long-term air temperature value in Poland is 8.76°C. It has been the warmest 30-year period since 1951!

VEAD		Air temperature (°C)									
YEAR	Winter	Spring	Summer	Autumn	YEAR						
2000	0,5	9,9	16,9	10,2	9,5						
2001	0,5	7,9	17,6	8,7	8,3						
2002	0,2	9,7	19,0	8,3	9,1						
2003	-3,8	8,2	18,6	8,3	8,3						
2004	-0,9	7,9	17,1	9,1	8,3						
2005	-0,1	7,3	17,2	9,3	8,3						
2006	-3,2	7,0	18,7	11,0	8,7						
2007	2,7	10,0	18,3	7,6	9,4						
2008	1,7	8,4	18,0	9,1	9,4						
2009	-0,7	8,8	17,5	9,3	8,5						
2010	-3,2	7,9	18,7	8,0	7,5						
2011	-3,0	8,9	17,9	9,0	8,9						
2012	-1,2	9,3	18,0	9,4	8,5						
2013	-1,8	6,8	18,3	9,2	8,5						
2014	1,3	9,8	17,9	10,0	9,6						
2015	1,1	8,5	18,9	9,3	9,7						
2016	1,8	9,0	18,2	8,9	9,2						
2017	-0,9	8,8	18,2	9,4	9,0						
2018	0,1	9,8	19,5	10,2	9,8						
2019	1,0	9,2	19,9	10,4	10,2						
2020	3,1	8,1	18,6	10,4	9,9						
2021	-0,2	7,1	19,1	9,5	8,7						

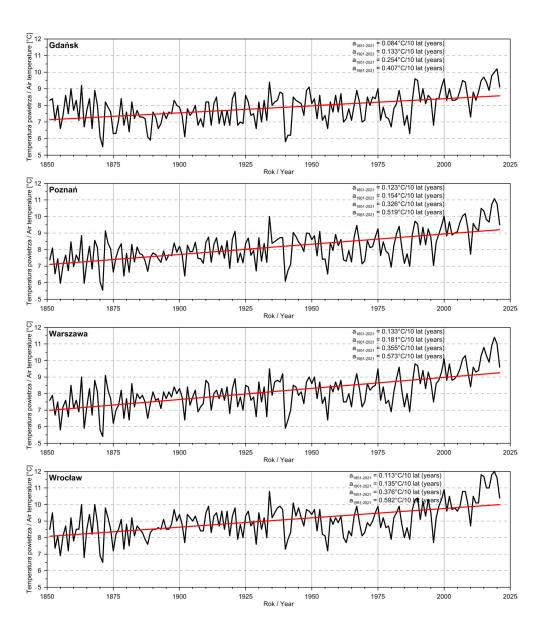

As mentioned before, the last 21 years have been the warmest period since the mid-20th century. During this period, the warmest winter was in the season December 2019 - February 2020 (season temperature 3.1°C), the warmest spring (March-May) occurred in 2007 (10.0°C), the warmest summer (June-August) in 2019 (19.9°C), and the warmest autumn (September-November) in 2006 (11.0°C). With regard to the year, the warmest one was recorded in 2019 (10.2°C).

	Air temperature (°C)								
YEAR	YEAR	Anomaly relative to 1981-2010	Anomaly relative to 1991-2020						
2019	10,2	1,9	1,5						
2020	9,9	1,6	1,2						
2018	9,8	1,5	1,1						
2015	9,7	1,4	1,0						
2014	9,6	1,3	0,9						
2008	9,4	1,1	0,7						
2007	9,4	1,1	0,7						
2016	9,2	0,9	0,5						
2002	9,1	0,8	0,4						
2017	9,0	0,7	0,3						
2011	8,9	0,6	0,2						
2006	8,7	0,4	0,0						
2021	8,7	0,4	0,0						
2009	8,5	0,2	-0,2						
2013	8,5	0,2	-0,2						
2012	8,5	0,2	-0,2						
2004	8,3	0,0	-0,4						
2003	8,3	0,0	-0,4						
2005	8,3	0,0	-0,4						
2001	8,3	0,0	-0,4						
2010	7,5	-0,8	-1,2						

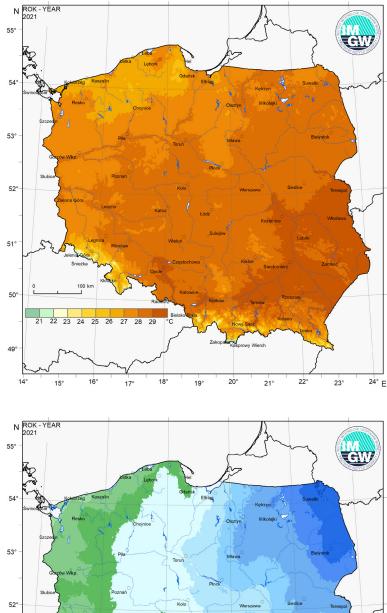

In the last 21 years, only in 2010, the annual average air temperature was below the long-term average for the period 1981-2010. The anomaly reached –0.8°C and was a of the extremely cold beginning of the year (January-February) and cold December. However, if we look at this issue from the perspective of the new climatological standards normal for the period 1991-2020, there are more years in which the annual average temperature was below the normal, precisely 8. This is because the last 30-year period, 1991-2020, was the warmest since the middle of the 20th century.

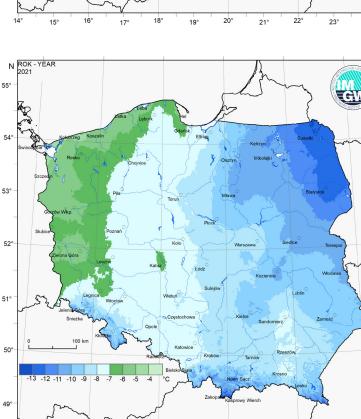


In 2021, the mean daily air temperature values (area average for Poland) were usually between 5% and 95% quantiles' values of average temperature (determined for measurements in the years 1991-2020). The episodes of heat waves, i.e., those in which the mean daily air temperature exceeded its 95% quantile value , were more frequent and much longer-lasting in the past year than the episodes of cold waves (mean daily air temperature below its 5% quantile value). To illustrate the scale of climate warming, the discussed diurnal variation is presented against the variability of long-term mean daily temperature values for the years 1951-1980 and 1991-2020. A constant difference between the mean daily values in the long-term period of 1991-2020 and 1951-1980 is clearly visible. This difference for each day is positive. Characteristically, these differences are stronger in January-August (between 1.1°C and 2.0°C) and weaker in September-December (between 0.6°C and 0.9°C).


The increase of the average annual temperature during the period 1951-2020 is characterized by a positive, statistically significant (at level of $1 - \alpha = 0.95$) trend of 0.29° C/10 years. It corresponds to an increase of temperature in the given period from 1951 up to 2.0°C. To illustrate the variability of temperatures, series are often presented in the form of anomalies from the climatological standard normal, i.e., the average for the last normal period, instead of a series of absolute values. Such a series presents positive values when a given year was warmer than normal, and negative when it was colder. Using a series of anomalies (deviations) from the normal allows for quick visual identification of colder and warmer periods. In addition to a series of anomalies, the graph presents a curve showing the course of the series of anomalies after smoothing it with a Gaussian filter with a 10-year window, i.e., after filtering out short-term temperature fluctuations.

The series of deviations show the temperature variability in particular physio-geographical regions in the period 1951-2020. Differences in variability between regions can be compared, and regions, where temperature changes are the strongest and those where they are the weakest can be identified. The value of the trend coefficient varies in the particular climatic regions of the country. The strongest temperature increase occurs in lake districts, where it exceeds 2.1°C, the weakest is in the Sudetes, reaching nearly 1.8°C since 1951.


AIR TEMPERATURE Thermal conditions variability, 1851-2021



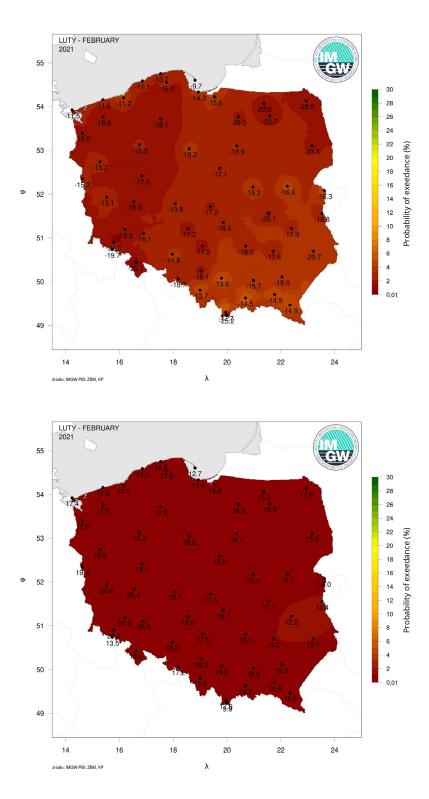
Regular instrumental temperature measurements began in Poland in the 18th century, including Warsaw (in 1779), Wrocław (in 1791), and Kraków (in 1792). However, at the earliest, they commenced in Gdańsk in 1739. In the first half of the 19th century, regular meteorological measurements were launched in other Polish cities. Intergovernmental Panel on Climate Change (IPCC) has been systematically publishing temperature variability analyses for the global and regional series since 1851. For this reason, we present the temperature variability in Gdańsk, Poznań, Warsaw, and Wrocław in the period 1851-2020. Each series documents an increase in air temperature, although the pace of change varies. The weakest temperature rise, reaching 1.4°C, occurs in Gdańsk, and the strongest, reaching 2.3°C, in Warsaw. Presented series clearly illustrate that the rate of warming is steadily increasing. Trend coefficients calculated for the period 1901-2020 are higher than those for 1851-2020, and these calculated for the period from 1951 – even higher. The values of the trend coefficients increased sharply in the period after 1980.

AIR TEMPERATURE Extreme temperatures – quantiles

Spatial variability of the 95% percentile of the maximum air temperature identifies the areas where the occurrence probability of a higher temperature than the map shows is lower or equal to 5%. A clear general gradient is directed from the southeast (the warmest areas) to northwest Poland (the coldest ones). The influence of the southern Baltic's cold water masses, responsible for the "flattening" of the highest temperature values, is clearly visible in late spring and summer. In turn, the warming influence of the Baltic Sea is reflected in the spatial distribution of the 5% percentile of the minimum temperature. Its values are clearly higher on the coast and the coastlands belt, the central and western part of Pomerania, and on the western edge of the country. The lowest values of this characteristic occur (except for mountain areas) in north-eastern Poland, and the highest along the coast and in the western part of the country.

20

22

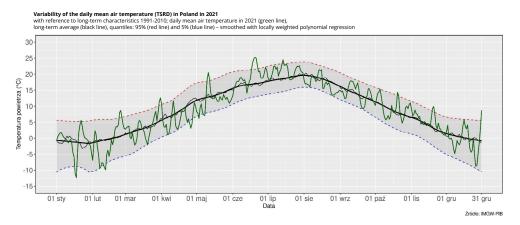

23

21°

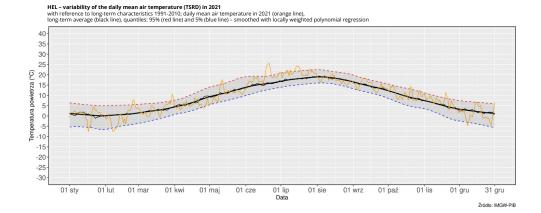
^{24°} E

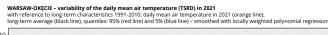
AIR TEMPERATURE Extreme temperature in February – thermal hazards risk

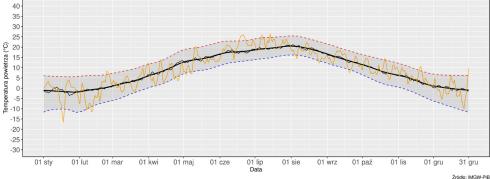
Last February was the coldest month of the year, with an average air temperature of -1.6°C and an anomaly to the normal of -1.5°C. At the same time, there was a substantial temperature variability in that month with an amplitude exceeding 43°C (Jelenia Góra). At the other stations, the amplitudes of temperature changes were lower but often between 35-38°C. Such strong temperature variability cause numerous hazards - both for the natural environment, infrastructure, especially roads, municipal and energy infrastructure, agriculture, as well as for human health and life. The maximum temperature values recorded in February at the majority of stations in Poland corresponded to values of the probability of exceeding 5% or less. At the same time, in the case of absolute minimums of air temperature at most stations, the probabilities of occurrence of values lower than those recorded were 2% or less.

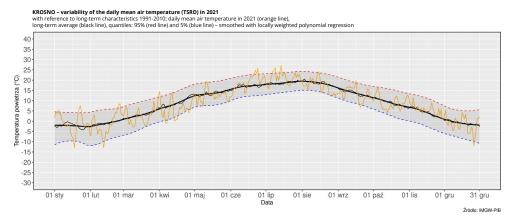

AIR TEMPERATURE Extreme temperature in July – thermal hazards risk

In turn, July last year was the warmest month, with an average air temperature of 20.9°C and an anomaly compared to the normal of 2.1°C. At the same time, there was a substantial temperature variability in that month with amplitudes of up to 22,5°C (Sandomierz). At the other stations, the amplitudes of recorded temperatures were lower, but in some places they were close to the indicated. Similarly as in winter, also in summer, strong temperature variabilty cause numerous hazards to the environment, human health, agriculture, the availability of surface water resources, infrastructure, etc. The maximum temperature values recorded in July at the majority of stations located in the eastern part of the country corresponded to values which the probability of exceeding is within the range of 2-8%. At the same time, in the case of absolute minima of air temperature at most stations in eastern Poland, the probabilities of occurrence of values lower than those recorded were from 40% to 60%. It means that the nights in July were thermally close to normal.

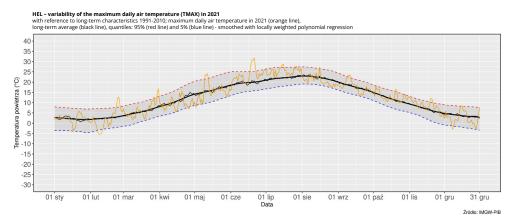


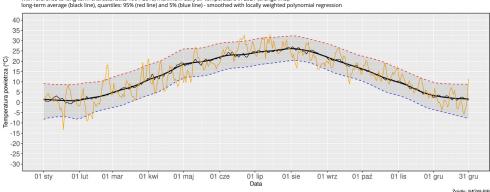

AIR TEMPERATURE Interannual variability


DAILY VARIABILITY OF THE AREA AVERAGE TEMPERATURE

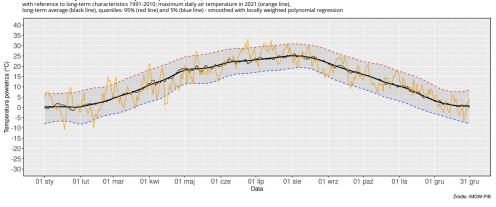


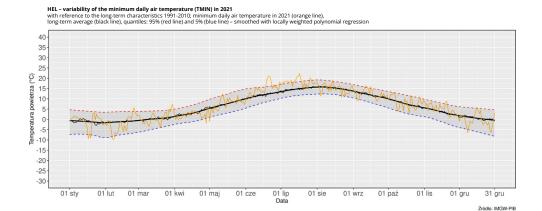
In 2021, the daily mean air temperature values (area average for Poland) were usually between the 5% and 95% quantiles values of the mean temperature (determined on the basis of measurements in the years 1991-2020). Heat waves episodes, i.e., those in which the daily mean air temperature exceeded the 95% quantile of this element, were more frequent and long-lasting in the past year than the cold waves episodes(daily mean air temperature below the 5% quantile value of this element).

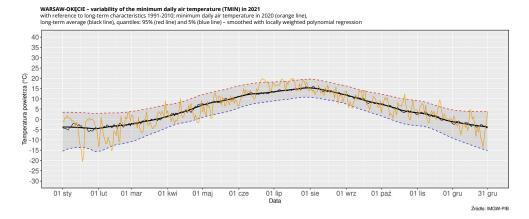


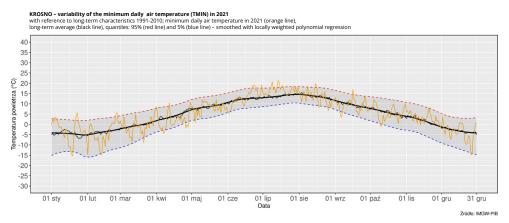


The inter-annual variability of daily mean air temperature at selected stations shows a picture very similar to that presented in the graph showing the variability of the daily area averaged temperature. However, there are differences in the occurrence of the so-called heat waves and cold waves, i.e., periods when temperature values exceeded the values determined by the 95% and 5% quantiles of this element. Cold episodes in mid-January and the first decade of February are clearly visible at all stations, as are the warm episodes in July and August.


ANNUAL VARIABILITY OF MAXIMUM DAILY TEMPERATURE

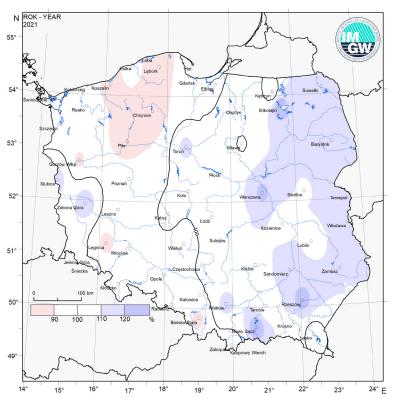

WARSAW-OKĘCIE - variability of the maximum daily air temperature (TMAX) in 2021 with reference to long-term characteristics 1991-2010; maximum daily air temperature in 2021 (orange line), long-term average (black line), quantiles: 59% (red line) and 5% (blue line) - smoothet with locally weighted poly




KROSNO - variability of the maximum daily air temperature (TMAX) in 2021 with reference to long-term characteristics 1991-2010; maximum daily air temper long-term average (black line), quantiles: 95% (red line) and 5% (blue line) - smoot

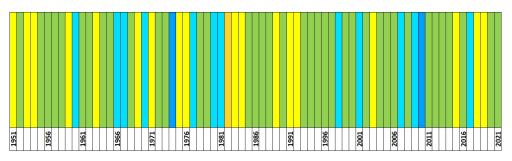
The interannual variability of the maximum daily temperature is reflected in the variability of daily mean temperature. It is worth noting that the cold episodes occurring in January and February were so strong that they were also confirmed by the variability of the maximum temperature at stations located outside the Baltic coast.



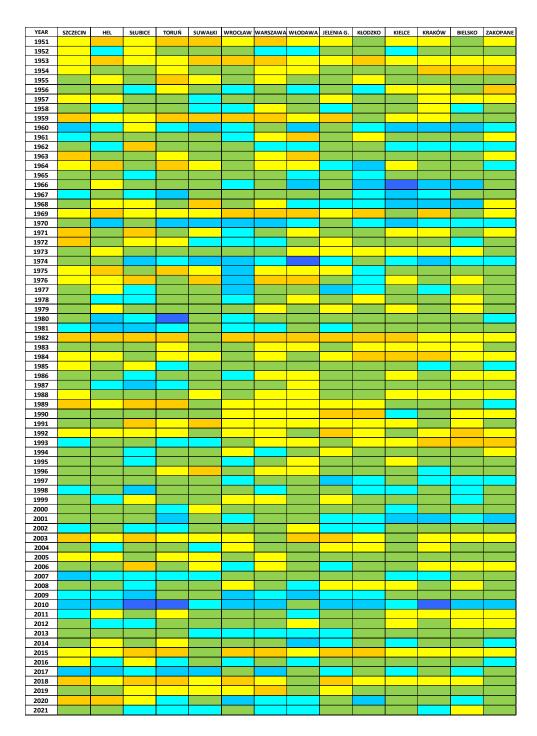


The interannual changes occurred similarly in the case of the minimum daily temperature values.

PRECIPITATION

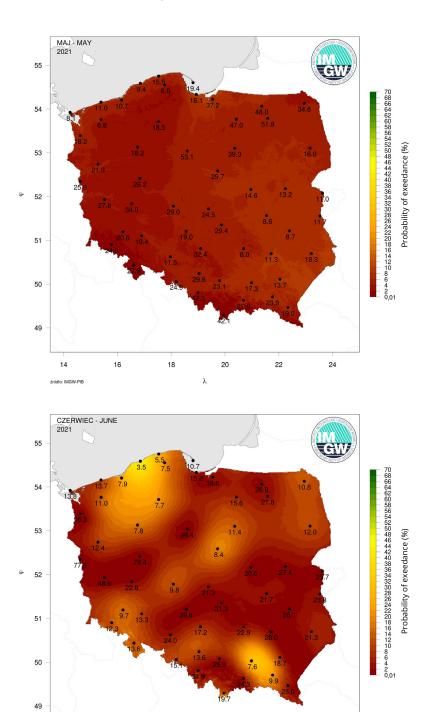

In 2021, the area-averaged annual total precipitation in Poland was 627.4 mm, nearly 103% of the normal determined on the basis of measurements from 1991 to 2020. According to the rank classification of the area average of total precipitation, covering the period since 1951, last year is in the 25th position. The highest amount of rainfall was in 2010 (with an area average total precipitation of 804.1 mm, which was 132% of the normal). The least amount of rainfall was in1982 (with only 422.6 mm, 69% of the normal). Precipitation totals in 2021 ranged from slightly over 450 mm to nearly 1050 mm, and the highest was recorded in the Tatra Mountains. In 2021, precipitation was between 80 and 190% of the long-term normal (1991-2020).





PRECIPITATION Pluvial conditions classification

Descriptive classifications are often used to describe the pluvial conditions, specifying to what extent the pluvial conditions of a given month, climatic season, or year differed from typical conditions. One of Poland's most popular classifications of pluvial conditions is the Kaczorowska classification, which is based on the percentage deviation from the precipitation normal for a given location. Individual classes are given descriptive names, as presented below. According to Kaczorowska's classification of pluvial conditions, the past year should be classified as a normal one.



Presentation of the amount of precipitation in a given year as a percentage with reference to the amount of rainfall in the normal period permits the introduction of a classification that allows a descriptive presentation of the pluvial conditions prevailing at a given station or area of interest. Contrary to thermal conditions, precipitation characteristics are characterized by high spatial variability. With reference to the long-term period 1951-2020, we can say that spatial variability of precipitation was significant in 2021. At the same time, we can see that 2021 was another period in which many stations recorded below normal precipitation.

PRECIPITATION Probabilities of exceedance of the maximum daily precipitation totals in May and June 2021

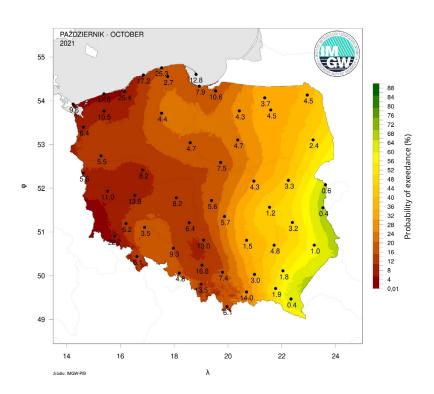
The presented maps of exceedance probability of maximum daily precipitation in May and June 2021 show both the diversity of pluvial conditions in these two months, and illustrate the occurrence of high precipitation in several large cities in Poland, which resulted in the so-called urban flash floods.

16

18

20

λ


14

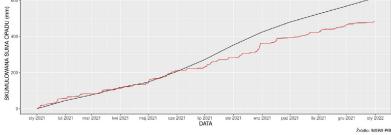
źródło: IMGW-PIE

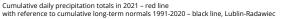
24

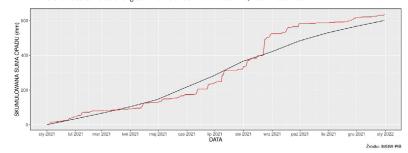
22

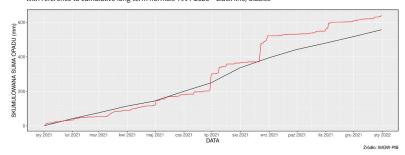
In October, pluvial conditions changed significantly when moving from west to east. While in the western part of the country there was precipitation with maximum daily totals, the probability of exceeding was 5% or less, in the eastern part of Poland, the maximum daily precipitation totals were low, and the probability of exceeding was 70%, calculated using data from 1991-2020.

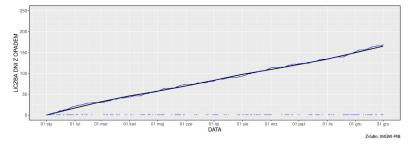


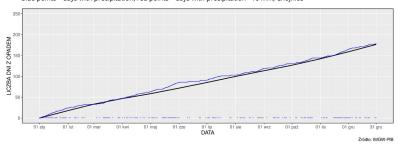

PRECIPITATION Cumulative precipitation totals and cumulative number of days with precipitation

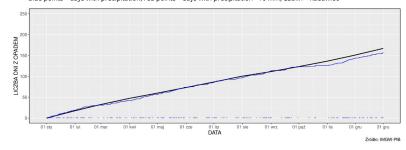

The graphs of cumulative precipitation totals in 2021 at selected stations enable us to visualize how the precipitation totals evolved over time during the past year with reference to the long-term normal. The periods of excess rainfall and their deficit compared to the normal are clearly visible. It is simple to identify nonprecipitation periods and efficient precipitation events with large totals. The presented material also illustrates a strong variability of precipitation at individual stations with reference to the normals characterizing precipitation at a given station.

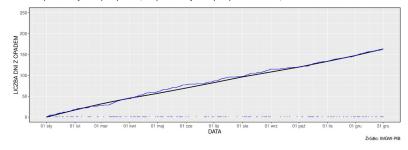

Cumulative daily precipitation totals in 2021 – red line with reference to cumulative long-term normals 1991-2020 – black line, Białystok






Cumulative daily precipitation totals in 2021 – red line with reference to cumulative long-term normals 1991-2020 – black line, Słubice


The interpretation of the cumulative precipitation total with reference to the normal informs us how often precipitation occurred in 2021 and whether there were more or less days with rainfall. If the annual precipitation was much higher than the normal and the number of days with rainfall was within the normal, it can be clearly stated that the precipitation was more or less efficient than usual at a particular station. Cumulative number of days with precipitation (daily precipitation total > = 0.1 mm) in 2021 – blue line with reference to the cumulative mean monthly number of days with precipitation in the long-term period 1991-2020 – bold black line, blue points – days with precipitation, red points – days with precipitation >10 mm, Białystok


Cumulative number of days with precipitation (daily precipitation total > = 0.1 mm) in 2021 – blue line with reference to the cumulative mean monthly number of days with precipitation in the long-term period 1991-2020 – bold black line, blue points – days with precipitation, red points – days with precipitation >10 mm, Chojnice

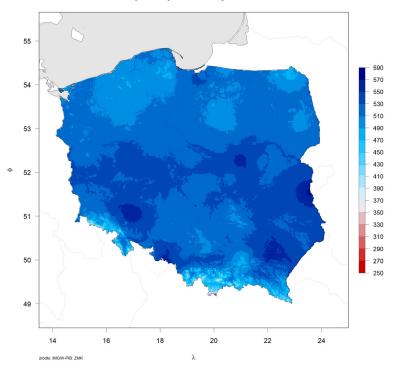
Cumulative number of days with precipitation (daily precipitation total > = 0.1 mm) in 2021 – blue line with reference to the cumulative mean monthly number of days with precipitation in the long-term period 1991-2020 – bold black line, blue points – days with precipitation, red points – days with precipitation >10 mm, Lublin – Radawiec

Cumulative number of days with precipitation (daily precipitation total > = 0.1 mm) in 2021 – blue line with reference to the cumulative mean monthly number of days with precipitation in the long-term period 1991-2020 – bold black line, blue points – days with precipitation, red points – days with precipitation >10 mm, Słubice

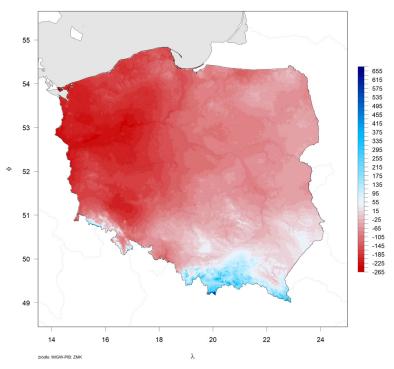
PRECIPITATION Thunderstorms at selected stations*

2021		June			July			August		YEAR
Station	Thunder- storm	Distant thunder- storm	Total	Thunder- storm	Distant thunder- storm	Total	Thunder- storm	Distant thunder- storm	Total	Total
BIAŁYSTOK	4	12	16	4	18	22	3	7	10	61
ELBLĄG-MILEJEWO	4	8	12	10	26	36	8	6	14	78
HEL	1	6	7	3	11	14	1	5	6	40
KALISZ	3	9	12	7	19	26	1	10	11	53
KASPROWY WIERCH	3	17	20	6	27	33	2	8	10	76
KOŁOBRZEG-DŹWIRZYNO	3	9	12	9	12	21	3	4	7	55
KOSZALIN	1	3	4	8	10	18	3	6	9	48
KOZIENICE	10	19	29	18	24	42	5	11	16	99
KRAKÓW-BALICE	14	17	31	28	33	61	9	9	18	124
KROSNO	10	15	25	17	57	74	7	24	31	161
ŁEBA	1	6	7	3	10	13	4	10	14	58
ŁÓDŹ-LUBLINEK	8	12	20	15	23	38	5	10	15	77
MŁAWA	4	7	11	28	43	71	2	9	11	108
OPOLE	3	9	12	6	17	23	0	4	4	42
POZNAŃ-ŁAWICA	1	2	3	4	0	4	5	3	8	26
RZESZÓW-JASIONKA	3	23	26	4	26	30	4	17	21	84
SIEDLCE	3	16	19	6	25	31	3	11	14	77
SZCZECIN	2	1	3	2	1	3	2	1	3	21
ŚNIEŻKA	0	5	5	3	16	19	5	3	8	40
TORUŃ	2	4	6	4	13	17	2	5	7	35
WARSZAWA-OKĘCIE	10	11	21	22	14	36	6	3	9	81
WŁODAWA	5	20	25	4	23	27	6	17	23	82
WROCŁAW-STRACHOWICE	9	8	17	13	13	26	5	5	10	60
ZAKOPANE	6	26	32	8	41	49	1	11	12	111
ZIELONA GÓRA	8	9	17	2	21	23	5	12	17	76
Total observed in the country	195	528	723	391	980	1371	154	386	540	3239

* only synoptic stations with a full-time 24-hour service are

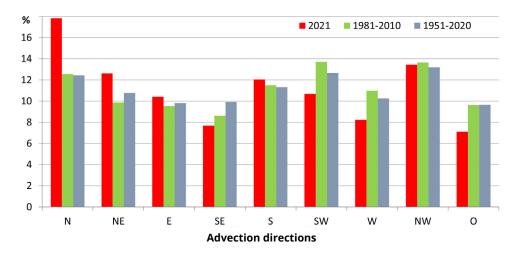

Thunderstorms are a dangerous phenomenon. The thunderstorm season in Poland culminates in the summer, from June to August. In July 2021, more than 1300 thunderstorms were observed in Poland. Most in Krosno (74), Mława (71) and in Kraków-Balice (61). In total, over 3200 thunderstorms were recorded in the country last year. Most in Krosno (161), Kraków-Balice (124) and Zakopane (111). In turn, the least number of stormes were recorded in Szczecin (21) and Poznań (26).

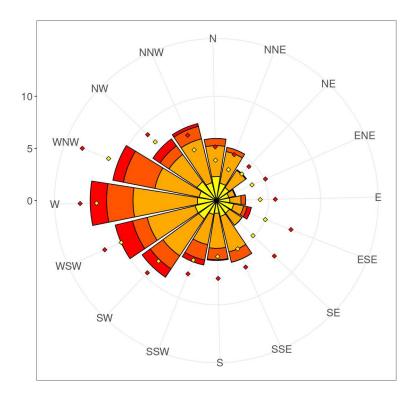
CLIMATIC WATER BALANCE Warm half-year


The climatic water balance (CWB) is the difference between the precipitation, i.e. precipitation total, and evapotranspitation, which can be determined based on measurements or using empirical formulas. Positive CWB value means that there was more precipitation than evaporation during the analysed period. In the case of negative CWB value, it is the opposite, evaporation prevails over precipitation.

From the economic point of view, information on CWB in the warm season, i.e., when there is a high demand for water in Poland in such an important sector of the economy as agriculture, is of great significance. The evaporation values are high. They range between 350 mm to 590 mm, which is between 75% and 125% of the amount of precipitation in the warm season. Despite the relatively high rainfall in the warm half of the year, positive CWB values were generally present in the higher parts of the Sudetes and the Carpathians Mountains, and Podkarpacie. In the remaining area of Poland, the KWB in May-October 2021 was negative. The loss of moisture in western Poland, reaching nearly 260 mm in the warm season, is of particular concern.

Total Evapotranspiration – May – October 2021

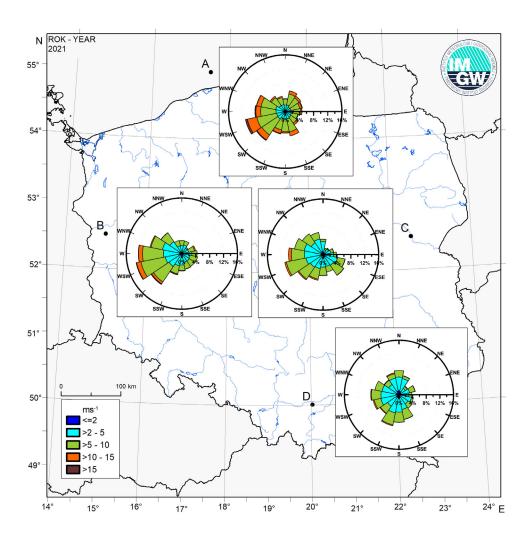



ATMOSPHERIC CIRCULATION Indices and surface wind

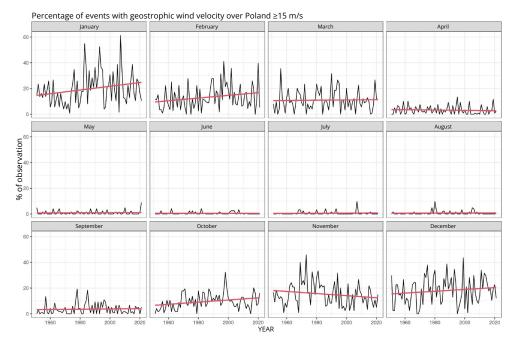
Day/Month	1	2	3	4	5	6	7	8	9	10	11	12
1	Oc	Oc	NWa	No	No	Ea	NEc	NWc	NEa	Sa	Sc	NWc
2	Eo	Sc	Na	No	Nc	SEa	NEo	NWc	Na	So	Sc	Nc
3	Eo	Oc	NWa	Na	No	SEa	NEc	NWo	No	So	Sc	Oc
4	Eo	NEc	No	NWa	Wc	Ea	Ec	So	NEa	SWo	Oc	Sc
5	Ec	Ea	Na	NWc	Wc	Na	SEc	Sc	Ea	So	NWo	Ec
6	SEc	Ea	NWa	NWc	Wc	NEa	So	SEc	Oa	So	NWa	SEo
7	Ec	Eo	No	NWc	NWc	NEa	So	SEc	SWa	SEa	Nc	SEo
8	Eo	Ec	Na	NWa	Wa	NEa	Sa	SWc	SWa	SEa	NEo	SEo
9	Eo	Ec	Ea	SWa	SWo	Na	Eo	SWa	So	Ea	Sa	SEc
10	Oa	NEc	Sa	SWo	SWo	Oa	Ea	Oa	So	Oa	SWa	SEc
11	So	NEa	SWc	So	Sc	Wo	Sa	Na	Oo	No	Wa	SEo
12	Oc	NEa	SWc	Na	SEc	NWc	SEo	Oa	No	Nc	Oa	Oa
13	NEc	NEa	SWc	Na	Oc	NWa	Ec	Wa	No	No	Eo	Wa
14	NEc	NEa	Wc	NEa	Oc	Wa	Oc	SWa	Na	Wo	Ea	Wa
15	NEo	Oa	Nc	NEa	SWc	NWa	No	Wo	Eo	NWc	Sa	NWa
16	NEo	Sa	NEo	NEa	SWc	Sa	NEo	Wc	Ec	NWo	Sa	NWa
17	No	So	NEo	Ea	Wc	Sa	No	Nc	SEc	NWo	Wo	Na
18	Wo	Sa	NEa	Ea	NWc	Sa	No	NWc	SEc	Na	NWa	Na
19	SWo	SWo	NEo	Ea	NWc	SEa	Na	NWc	Eo	SWa	NWo	Nc
20	SWc	SWa	NWa	Oo	NWo	SEo	Na	NWo	Eo	SWc	NWo	NEo
21	SWc	Sa	NWc	NWc	Wc	Sc	Na	Na	Na	NWc	Nc	Na
22	SWc	Sa	No	NWo	SWc	Ec	Na	NEa	Oa	NWc	No	Oa
23	SWc	Sa	NWa	Na	Wc	Ea	NEa	NEa	Wc	No	Na	Wo
24	Sc	SWa	NWa	Na	SWa	No	SEa	NEa	Wc	Sa	Wa	NWc
25	Oc	Wa	NWa	NEa	Sc	NEo	SEo	NEo	NWc	SWa	Wc	NWo
26	Nc	NWa	SWa	NEa	Eo	Na	SEc	NEc	Sa	Wo	Sc	Oo
27	Nc	Na	SWo	Ea	NEo	Na	So	Ec	SEa	SWa	Ec	So
28	Nc	Na	SWa	SEo	NEa	Na	SWc	NEo	SEa	SWo	Ec	Sc
29	Nc		SWa	Oc	NEa	No	Wc	NEc	SEa	SWo	NEc	Sc
30	Nc		NWa	Nc	NEa	NEc	Wc	NEc	SEa	SWo	NWc	Wc
31	Oc		NWa		NEa		Wc	NEc		SWo		NWc

Atmospheric circulation is one of the essential weather and climate factors. Because of atmosphere circulation, the weather in Poland changes from day to day, and even several times a day. There are many methods describing atmospheric circulation. One of the most popular is characterizing it by indicating the direction of the advection of air masses over the area of interest and by defining the nature of the air movement (whether it is cyclonic or anticyclonic). In a given season of the year, these parameters determine the thermal and humidity characteristics of air masses flowing over the studied area.

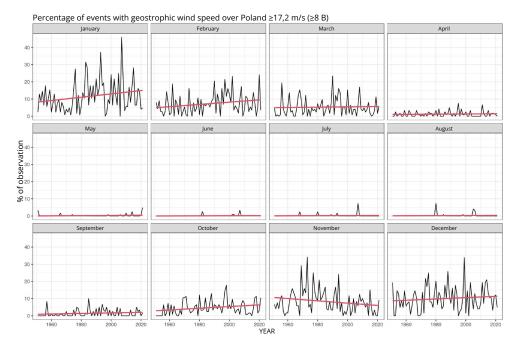
The circulation index's calendar indicates that in 2021 the air masses flowing from the north (from NW to NE, nearly 46%) and then from the west (from SW to NW, almost 33%) were prevailing in 2021. Compared to the normal period, the frequency of the flow of air masses from the north was higher by nearly 8%, and from the west, it was almost 5% lower than in the long-term period 1991-2020. The frequency of occurrence of air masses flowing from the south, from SE to SW, was in 2021 lower by more than 6% compared to the long-term period.



Speed ranges >15 10-15 5-10 2-5 <2

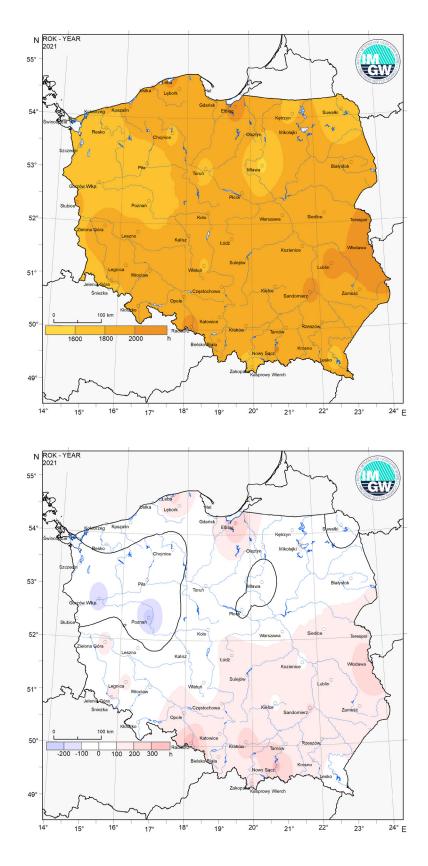

Characteristic	V (m/s)	u (m/s)	v (m/s)			
Mean (1991-2020)	8.2	2.7	0.5			
Mean	7.9	3.0	0.2			
Minimum	0.4	-17.5	-15.6			
Quantile Q ₁₀	3.3	-3.5	-6.6			
Quantile Q ₅₀	7.1	2.4	0.2			
Quantile Q ₉₀	13.9	11.0	7.2			
Maximum	24.7	22.6	18.8			
Mean direction (1991-2020)		259				
Mean direction		266				
Coefficient of constancy η		0.38				
η (1991-2020)	0.34					

Another type of index describing the atmospheric circulation over a given area is the geostrophic wind vector, which determines the direction and strength (velocity) of the inflow of air masses over a given area based on the baric (Sea Level Pressure) field . If the current thermal and pressure conditions are taken into account, then by correcting the air density, actual values of the index are obtained. The geostrophic wind vector does not consider, among others, the frictional effect resulting from both the variability of the topography and land use. However, it is the maximum wind speed at which the wind would blow in a given area without the factors mentioned above.


The average annual wind vector in 2021 was similar to the vector characteristic for the long-term period 1991-2020, which shows a moderate advection of air masses from the west. It is also reflected in the wind rose, showing the dominance of advection from the SW to NW sectors.

This characteristic of the flow direction of air masses is reflected in the wind directional structure at the surface.

The increase in danger associated with strong wind has been observed for many years. This danger is particularly frequent in the period from October to March. For wind with a velocity exceeding 15 ms⁻¹, we observe an increase in the frequency of such winds by 6% in October, more than 5% in December, 10% in January, and 7.8% in February. The threshold of 15 ms⁻¹ is a critical value, the exceedance of which is the basis for issuing a 1st level warning.

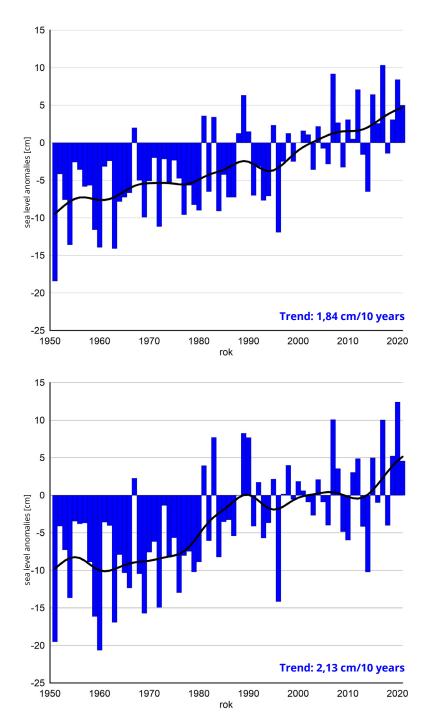


A wind speed of at least 17.2 ms⁻¹ is called a strong gale – It is the wind force threshold for 8 on the Beaufort scale. At sea, the waves reach a height of around 5 m, tree branches can be broken on land, and motor vehicles may have difficulties keeping the track. As the speed increases, the destructive force of the wind increases, and the damage becomes more severe and extensive. There is also a systematic increase in the frequency of wind events above 17.2 ms⁻¹. Since the midtwentieth century, the frequency of such winds has increased by 3.5% in October, more than 3% in December, 7% in January, and 4.7% in February.

SUNSHINE DURATION

Sunshine duration, or the length of time when the solar disk is visible, depends on the location, topography, and cloud cover – both the amount of cloud coverage and the cloud genera in the area concerned. Relative sunshine duration, that is the ratio of effective sunshine duration to the maximum possible, determined by the length of the day (i.e., from sunrise to sunset) was between 35% and 47% in 2021.

The annual total of sunshine duration in Poland was between 1,500 and 2,300 hours and was higher than the climatological normal from 100 up to 400 hours in the south-eastern part of the country. The sun shone shorter than the long-term normal in the western part of Pomerania and the north-western and central part of Wielkopolska. The sun shone the longest in Łeba, for 2,127 hours. The lowest number of hours with the sun was recorded in 2021 on Śnieżka (1,458 hours) and in Mława (1,564 hours).



SEA LEVEL

The sea level in the southern Baltic region is steadily increasing, which is the result of the increase of temperature on a global scale and the domination of the western zonal circulation of the atmosphere in this area. The rate of sea increase varies. It is higher in the eastern part of the coast (mean sea level increase by nearly 13,1 cm in Świnoujście and by about 15,1 cm in Władysławowo). This variation is a consequence of the dominance mentioned above of the western zonal circulation, which maintains a constant inclination of the Baltic mirror, increasing from west to east.

In 2021, the maximum recorded daily mean level on the water gauge in Świnoujście was 553 cm, while the lowest was 465 cm. In the past year, no daily mean levels above the warning level of 560 cm or below the SNW (416 cm) were observed. The most frequent mean daily sea levels were in the range 501 and 510 cm (32.3%) and 511-520 cm (18.9%). In turn, in Władysławowo, the recorded maximum sea level was 577 cm, and the minimum sea level was 463 cm. Most often, sea levels on the water gauge in Władysławowo were in the range of 501-510 cm (28.68%) and 511-520 cm (21.97%). There were three cases of exceedance of the alarm state. There was no case below SNW.

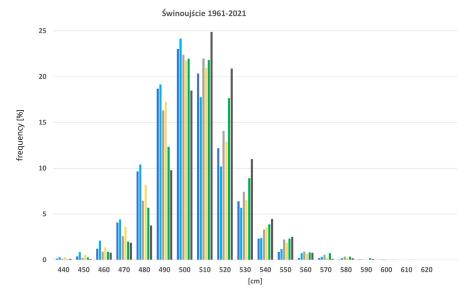
The change in the frequency of sea levels from a low range of values, below the so-called medium level, visibly stands-out from decade

to decade. In the western and eastern parts of the coast, we can observe a decrease in the number of low levels, especially in Świnoujście. At the same time, we can observe an increasing trend in the number of cases of higher than mean levels, particularly to the alarm levels.

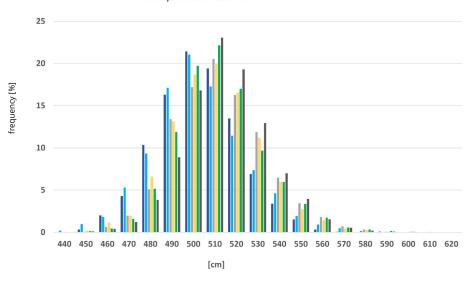
Świnoujście	1961-1970	1971-1980	1981-1990	1991-2000	2001-2010	2011-2021
below SNW [%]	0.000	0.028	0.000	0.027	0.000	0.080
above the alarm level [%]	0.137	0.110	0.084	0.055	0.220	0.224
Władysławowo	1961-1970	1971-1980	1981-1990	1991-2000	2001-2010	2011-2021
below SNW [%]	0.082	0.547	0.027	0.109	0.055	0.082

0.465

0.328


0.549

0.373


0.164

above the alarm level [%]

0.110

■ 1961-70 ■ 1971-80 ■ 1981-90 ■ 1991-2000 ■ 2001-2010 ■ 2011-2021

Władysławowo 1961-2021

■ 1961-70 ■ 1971-80 ■ 1981-90 ■ 1991-2000 ■ 2001-2010 ■ 2011-2021

EXTREMES

	VARIABLE	VARIABLE	DATA	STATION
ıre*	max	36.1	20.06.2021	Słubice
Temperature* (T°C)	min	-26.4	18.01.2021	Suwałki
Tem	min 5 cm**	-32.9	18.01.2021	Białystok
no	Σ max 24 h	104.4	23.08.2021	Śnieżka
Precipitation (RR mm)	Σmax	1,531.9		Kasprowy Wierch
Pre	Σmin	442.1		Legnica
ation	Σ max 24 h	16.9	29.06.2021	Kalisz
Sunshine duration (U h)	Σmax	2,127.0		Łeba
Sunsh	Σmin	1,458.0		Śnieżka

*temperature value without high mountain stations (Śnieżka and Kasprowy Wierch) ** temperature at a height of 5 cm above ground level

SUMMARY OF EXTREME WEATHER AND CLIMATE EVENTS IN POLAND IN 2021

Observed extreme weather				Physical characte		
or climate event	Event Start	Event End	Duration	Location/Area	Rarity	Description of event
Snowstorms	2021-01-13	2021-01-13	several dozen minutes	Western part of the country	Unusual	Snowstorms caused by a low over the Baltic Sea and an a companying cold front; the PERUN system recorded atm pheric lightning in the western part of the country.
Cold wave	2021-01-10	2021-01-19	10 days	Almost the entire country, especially the north-eastern, eastern, central and southern parts of the country	Unusual	As a result of the influence of an extended high and the for frosty continental air, frosty days with Tmax and Tmin below 0°C occurred for several consecutive days.
Heavy snowfall	2021-01-25	2021-01-25	1 day	Podkarpacie	Unusual	Heavy snowfall caused by a low center with an occlusion front over the south-eastern part of the country; the incr in snow cover in 1 day was over 20 cm in some places, e. meteorological station Puławy Dolne – 25 cm, Jasło – 30 d
Heavy snowfall	2021-02-07	2021-02-07	1 day	Southern part of the country	Unusual	Heavy snowfall occurring below the parallel line passing through Zielona Góra – Łódź, caused by the movement of the warm atmospheric front.
Dust from the Sahara desert	2021-02-07	2021-02-07	1 day	Southern part of the country	Unusual	The dust zone from the Sahara desert reached the south part of the country, where there was snowfall with Saha dust particles falling as a result of the warm atmospheric front.
Freezing rain	2021-02-07	2021-02-08	2 days	Southern part of the country (Małopol- skie, Podkarpackie and partly Świętokrzy- skie voivodeships)	Unusual	Heavy precipitation of freezing rain and wet snow on the cooled surface, associated with the warm atmosp front, caused the occurrence of glaze in a large area.
Blizzards/Snowstorms	2021-02-07	2021-02-08	2 days	Southern part of the country (Małopol- skie, Podkarpackie, Lubelskie and partly Świętokrzyskie voivodeships)	Unusual	Heavy snowfall combined with strong wind gusts exceed m/s caused blizzards and snowstorms.
Cold wave	2021-02-05	2021-02-16	11 days	Almost entire country, especially the nor- th-eastern, eastern, central and southern parts of the country	Unusual	As a result of the influence of an extensive high and frost continental air flow, for several consecutive days at man measuring stations, frosty days occurred with Tmax and below 0°C. At many synoptic stations, Tmin dropped belo -20°C (e.g. Białystok, Suwałki, Mława, Olsztyn).
Heat wave/Thaw	2021-02-21	2021-02-26	6 days	Western and southern part of the coun- try to Małopolska	Unusual	The influence of the high-pressure wedge extending from the Mediterranean Sea resulted in the advection of warm from the south over the country. At many measuring sta located in the western and southern part of the country, exceeded 17°C, and locally also 20°C (e.g. synoptic statio Zielona Góra – 20.4°C, Wrocław Starachowice – 20.6 C, Je Góra – 21,2°C).
Cold wave	2021-02-22	2021-02-22	1 day	The Tatra Mountains and the Sudetes Mountains	Unprecedented	Record high air temperatures were recorded at the high mountain meteorological observatories due to the therm inversion. At the Kasprowy Wierch synoptic station, the T was 9.9°C and was higher by 2.1°C than the previous rec for February in 1989. At the Śnieżka synoptic station, Tm. was 13.5°C and was higher by 3.4°C for February from the beginning of the measurements.
Drought	2021-03-01	2021-03-31	31 days	Entire country	Unusual	At many synoptic stations, the monthly precipitation tota below the long-term average, and the month was classifi as dry and locally also very dry (e.g. synoptic station Sand mierz – 6.8 mm).
Heat wave	2021-03-31	2021-03-31	1 day	Almost entire country, especially so- uthern part of the country	Unusual	As a result of the advection of warm air from the south at many measuring stations Tmax ≥ 20°C. The highest air temperature of the month was recorded at the Otmuche measuring station at 24.3°C.
Cold wave	2021-04-01	2021-04-30	30 days	Entire country	Unprecedented	Extremely cold April all over the country. The average mo air temperature in the country was 6.0°C (the coldest Ap in the 21st century).
Snowfall	2021-04-13	2021-04-14	2 days	Southern part of the country	Unusual	In the southern part of the country, wet snowfall occur- red in the foothills and mountain areas (at many stations the snow cover increased from 5 to 20 cm, in the mounta up to 40 cm).
Rain	2021-04-13	2021-04-17	5 days	Southern and south-eastern part of the country	Unusual	Due to the influence of the Black Sea low with the atmost pheric fronts system over the southern and south-easter part of the country, precipitation of a spreading nature of curred (e.g. Rzeszów synoptic station - the precipitation t in the third decade of the month was the third-highest si 1952; Nowy Sącz synoptic station – 24.3 mm daily precipitotal).

	Interferences occurring
26	
ac- 105-	
flow า	
n rease e.g. cm.	Transport problems, damage to power lines, broken bran- ches and trees.
5	Transport problems, damage to power lines, broken bran- ches and trees.
hern aran ic	
pheric	Transport problems, damage to power lines, broken bran- ches and trees.
ding 20	Transport problems, difficult road conditions.
sty iy I Tmin low	
m m air ations r, Tmax on elenia	
n mal Tmax cord nax	
al was fied ido-	
ir ów	
onthly oril	
is, tains	Transport problems.
s- ern oc- total since bitation	

Observed extreme weather							
or climate event	Event Start	Event End	Duration	Location/Area	Rarity	Description of event	Interferences occurring
Rain/Thunderstorm	2021-05-02	2021-05-02	1 day	Almost entire country	Unusual	Moving through the country of the moisture-rich low "Daniel" caused heavy rainfall in many regions of Poland; the daily to- tals locally exceeded 50 mm, e.g. at the Toruń synoptic station, the daily precipitation total was 53.1 mm). In Lower Silesia, there was a 3rd level hydrological warning for the Barycz river basin.	Flooding, damage to roads and buildings.
Tornado	2021-05-02	2021-05-02	1 day	Tereszpol Zygmunty (50,558858°N; 22,928202°E)	Unprecedented	A tornado was formed as a result of the thunderstorm super- cell moving through the municipality of Tereszpol.	Destruction of residential buildings and outbuildings, broken trees, damaged vehicles.
Snow	2021-05-08	2021-05-09	2 days	Śnieżka	Unprecedented	In May, a record snow cover of 130 cm was recorded on Śnież- ka for this month (not recorded in May since World War II).	
Cold wave	2021-05-01	2021-05-31	31 days	Almost entire country	Unusual	In most parts of the country, May was below the thermal normal, and locally in the west much below the normal, e.g. in Warsaw, the average monthly temperature was 12.9°C and was 1.4°C lower than the long-term average.	
Rain	2021-05-01	2021-05-31	31 days	Almost entire country	Unusual	In most parts of the country, May was humid and very humid, e.g. at the synoptic station in Toruń the monthly precipitation total was 111.8 mm and constituted 218.3% of the precipita- tion normal.	
Hail	2021-06-05	2021-06-05	several hours	Małopolskie voivodeship	Unusual	In the south of the Świętokrzyskie voivodeship, a thunder- storm supercell formed, which moved over 100 km through the Małopolska region. The size of the hailstones based on HA- ILSZ radar product was about 40 mm.	Destroyed crops and orchards.
Heat wave	2021-06-17	2021-06-21	4 days	Western and central part of the country	Unusual	Due to the advection of hot tropical air mass, at many sta- tions the maximum daily air temperature exceeded 30°C (e.g. at the synoptic station in Słubice, the highest maximum tem- perature in this period was 35.8°C – 20.06.2021).	
Rain	2021-06-22	2021-06-22	several dozen minutes	Poznań (52°52'N; 16°58'E)	Unprecedented	Because of the cold atmospheric front and its preceding co- nvergence line moving through the country's territory, a thun- derstorm cell was formed within which torrential precipitation occurred, causing flash floods (e.g. 60.8 mm of rainfall fell within 1 hour at the synoptic station in Poznań).	Tunnels, roads, streets and cars flooded as well as residenti buildings and outbuildings. More than 1500 interventions by the fire brigade.
Tornado	2021-06-24	2021-06-24	several dozen minutes	Koniuszowa (49,656423°N; 20,787117°E) Librantowa (49,666132°N; 20,756902°E)	Unprecedented	A tornado formed under one of the thunderstorm supercells due to the movement of the cold front, where the develop- ment of highly developed thunderstorm cells was taking place.	More than 80 fire brigade interventions. Dozens of resident buildings and outbuildings damaged.
Rain/Thunderstorms	2021-06-24	2021-06-24	several hours	Southern and central part of the country	Unprecedented	From the Lublin region, through the center of the country, to Silesia, a mesoscale convective system was moving with heavy rainfall and strong wind gusts (e.g. at the Wronowice measuring station, the daily precipitation was 110.7 mm).	Flooding of residential buildings and outbuildings, farmland destruction of road infrastructure.
Rain/Thunderstorms	2021-07-01	2021-07-01	several hours	North-eastern part of the country	Unusual	As a result of the movement of an active storm system thro- ugh the north-eastern part of the country, at many measuring stations the daily precipitation total exceeded 40 mm (e.g. Białystok station – 46 mm, Trzcińsko-Zdrój station – 70 mm, Narewka station – 55 mm).	Flooding of buildings and streets.
Rain	2021-07-02	2021-07-02	several hours	North-eastern part of the country	Unprecedented	Due to the influence of the occlusion front, on which nume- rous thunderstorm cells developed, heavy rainfall occurred in the north-eastern part of the country, with a daily total exceeding 134 mm at the Zawady measuring station.	
Rain/Thunderstorms	2021-07-08	2021-07-08	1 day	Western and central part of the country	Unusual	On the convergence line separating hot and very rich in wa- ter vapour tropical air from cooler polar maritime air mass extended multicellular thunderstorm structures were formed with strong wind gusts and heavy rainfall. They moved from the west to the east (e.g. Mikołajki measuring station – 71, 3 mm [16.8 mm/10 min]; Oborniki Śląskie measuring station – 73.4 mm [10.2 mm/10 min]).	Flooding of residential buildings and outbuildings, streets and, roads; damage to road infrastructure, broken trees, and roofs.
Hail	2021-07-09	2021-07-09	several dozen minutes	Kraków (19°56′E; 50°04′N)	Unusual	Heavy rainfall (12.8 m/10 min – Cracow Observatory station) and large hail (local hailstones with a diameter of 10 cm) occurred as a result of a thunderstorm supercell formed on the convergence line which moved through Cracow.	Flooding of buildings, flooded roads, and streets; damage to cars and plant crops.

Observed extreme weather	Physical characteristics of event								
or climate event	Event Start	Event End	Duration	Location/Area	Rarity	Description of event			
Rain/Thunderstorms	2021-07-18	2021-07-18	several hours	Głogoczów (49°54'08"N; 19°50'52"E)	Unusual	As a result of the formation of a stationary thunderstorm over the Beskid Makowski and the Wieliczka Foothills, hea rainfall occurred (e.g. the Radziszów measuring station – the precipitation total for 5 hours was over 50 mm).			
Rain/Thunderstorms	2021-07-18	2021-07-18	several hours	Nowy Sącz (49°37'N; 20°42'E)	Unprecedented	As a result of the formation of a thunderstorm cell over the Sądecka Valley, heavy rainfall occurred (measuring sta Nowy Sącz – 16.8 mm/10 min)			
Waterspout	2021-07-19	2021-07-19	several dozen minutes	Baltic Sea	Unusual	Two waterspouts were observed in the Baltic Sea near Jur			
Heat wave	2021-07-01	2021-07-31	31 days	Entire country	Unusual	July in Poland was classified as extremely warm. The avera air temperature reached 20.9°C and was the third highest lue since 1951 (the second highest value in the 21st centu			
Rain	2021-08-05	2021-08-05	1 day	Cracow (19°56′E; 50°04′N)	Unprecedented	As a result of the movement of the low center through so- uthern Poland, precipitation of a spreading nature occurr in this part of the country, during which at many measurir stations the daily precipitation total exceeded 50 mm. The record daily precipitation total of 104.3 mm was recor at the Cracow Observatory station; it was the highest daily total since the beginning of the measurements, i.e. since			
Rain	2021-08-30	2021-08-31	2 days	Most of the country	Unprecedented	As a result of the movement through the country of the lo with the occlusion front, heavy rainfall of a spreading na- ture with locally embedded thunderstorm cells occurred in a considerable area, e.g. at the Szczyrk measuring static the daily precipitation total was 127.6 mm. In the southern part of the country, there was a 3rd level hydrological war related to floods and exceeding the alarm levels.			
Rain	2021-08-01	2021-08-31	31 days	Entire country	Unprecedented	In August, the area-averaged precipitation total amounted to 140.1 mm, which was 212% of the normal for this mont determined by the measurements in the years 1991-2020 According to Kaczorowska's classification, last August sho be classified as extremely humid. The highest exceedan- ce of the monthly normal occurred in Sandomierz where 215.1 mm of precipitation dropped, which was 386.2% of the long-term normal 1991-2020.			
Strong wind	2021-09-23	2021-09-23	1 day	Northern part of the country	Unusual	As a result of the movement of the active low center throu the northern part of the country with the atmospheric fro system, high wind speeds were recorded in the coast belt Rozewie measuring station – 101 km/h, Dziwnów measuri station – 100 km/h).			
Drought	2021-10-01	2021-10-31	31 days	Entire country	Unusual	At many IMGW-PIB measuring stations, the monthly preciption total did not exceed 5 mm (e.g. synoptic station Włod – monthly precipitation 0.4 mm).			
Strong wind	2021-10-21	2021-10-21	1 day	Most of the country	Unusual	As a result of the shallow secondary low moving through the Baltic Sea, in the western and northern parts of the co try, there were strong wind gusts and, in some places thur derstorms (e.g. Rozewie measurement station – 103 km/h) Śnieżka measurement station – 158 km/h). There was a sto in the Baltic Sea with a strength of 10-11 on the Beaufort s			
Cold wave	2021-12-25	2021-12-27	3 days	Entire country	Unusual	In most parts of Poland, there were significant drops in air temperature due to the advection of continental air. On 2 December, the negative anomaly of air temperature at so stations reached 14°C below normal (Kłodzko measuring station).			
Heat wave	2021-12-30	2021-12-31	2 days	Most of the country	Unusual	As a result of the advection of warm air mass from the so- uthwest, in large part of the country, the maximum daily a temperature exceeded 10°C (e.g. Legnica measuring statio 14.6°C – the highest value recorded on 31 December).			

	Interferences occurring
orm cell heavy n –	Flooding of residential buildings and outbuildings, streets and roads; damage to the road infrastructure
er g station	Flooding of residential buildings and outbuildings, streets and roads; damage to the road infrastructure.
r Jurata.	
average hest va- entury).	
h so- ccurred suring ecorded daily nce 1895.	Flooding of residential buildings and outbuildings, farmlands, roads and streets; damage to road and municipal infrastruc- ture.
ne low na- red station, thern warning	Flooding of residential buildings and outbuildings, farmlands, roads and streets; damage to road and municipal infrastruc- ture.
inted nonth, 2020. should an- ere 6	
hrough c fronts belt (e.g. asuring	
orecipita- Vłodawa	
ugh te coun- thun- tm/h, a storm fort scale.	Fatalities in Lower Silesia, broken trees, traffic problems, power failures.
in air Dn 26 at some ing	
e so- aily air station –	